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OVERALL SAMPLE STATISTICS

PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

_ 1\ X
| G (“ﬁ) 2 Ve Sample aritmetic mean, with N being the sample size
=1
2 I < 2 Sample variance
§°= N~ 1 g:l §7 _J_")
g s/ Coefficient of variation NOTICE: the sample statistics are
Y | estimators of the population
N g: v, — ) statistics u, 2, y and p,
g= =1 s Skewness coefficient
(N—1)(N—2)s
= S
Tie = Py Sample autocorrelation function
| N—k _ .
Cp = (17/) Y V=)~ y) k=0 Sample autocorrelation coefficient at lag k
=

= P-L B Source: Handbook of hyrology, Maidment
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Concept

function (cdf)

Probability mass
function (pmf) and
probability density
function (pdf)

Mean, average, or
expected value

Cumulative distribution

Population value,
discrete case

Population value,
continuous case

Sample value
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Describes the probability that a
random variable is less than or
equal to a specified value x
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pmf: the probability that X is
equal to k

=S PX=x)x,

i=1]
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Describes the probability that a

random variable is less than or
equal to a specified value x
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pdf: first derivative of the
cumulative distribution function

Fi
fog =2

u=f Xf(x) dx
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Empirical distribution function (edf):
describes the observed frequency of a
random variable being less than or

equal to a specified value x
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Histogram: observed frequency with
which random variable X falls into the
assigned ranges
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Source: Handbook of hydrology, Maidment



0’-[_’ (x = ) f(x) dx

Variance

kth central moment

Standard deviation

Coefficient of variation
or relative standard
deviation (if u # 0)

Coefficient of skew (a
measure of asymmetry)
Quantiles

Median (useful for
describing central
tendency regardless of
skewness)

Upper quartile, lower
quartile, and hinges

Interquartile range
(useful for describing
spread of data regardless
of symmetry)

ol= 5‘, P(X = xXx, — pf

i=]

M& = i P(X:x.xx: —”)k
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X, is any value of X that has the properties that
PX<x,)=p
PIX>x]<1—p
Xo.s
Any value of X that has the property that
PIX<x,]=05
P[X>x,]=<0.5

Upper quartile = x; 55
Lower quartile = x; ¢

X075 — Xo.25

Width of central region of population containing probability of 0.5

M, = f (x — pYf(x) dx
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s> g

S=Js?

cv=3

X
M
G= S—;
X, is the pth quantile of EDF

Xos

The middle observation in a sorted
sample, or the average of the two
middle observations if the sample size
is even.

Upper hinge = X, ,;
This is an approximation to the sample
upper quartile; it is defined as the
median of all sample values of X =
Xo.s0- The lower hinge, X, ,s, is defined
analogously.

) 'i,o.u - /i’o.zs
Width of central region of data set
encompassing approximately half the
data
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Source: Handbook of hyrology, Maidment
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Ck
n=—
Co k=0 k=1 k=2
x(t) x(t-0) x(t) x(t-1) x(t) X(t-2)
[\ N=k 0.5 0.5 0.5 0.5
- - = 0.52203365 0.52203365 0.52203365 0.5 0.52203365
Ce = I—V 2 (yl+k ,V) (yt y) k=0 -0.1808619 -0.1808619 -0.1808619 0.52203365 -0.1808619 0.5
=1 -0.0761155 -0.0761155 -0.0761155 -0.1808619 -0.0761155 0.52203365
-0.9058361 -0.9058361 -0.9058361 -0.0761155 -0.9058361 -0.1808619
-1.1259897 -1.1259897 -1.1259897 -0.9058361 -1.1259897 -0.0761155
-1.8979435 -1.8979435 -1.8979435 -1.1259897 -1.8979435 -0.9058361
The autocorrelation tells how much of the -1.9881003 -1.9881003 -1.9881003 -1.8979435 -1.9881003 -1.1259897
Variance Of the data at a given time t is explained -1.1741327 -1.1741327 -1.1741327 -1.9881003 -1.1741327 -1.8979435
, , -0.4695902 -0.4695902 -0.4695902 -1.1741327 -0.4695902 -1.9881003
by the variance of data at previous lags 0.08045628 0.08045628 0.08045628 -0.4695902 0.08045628 -1.1741327
046581  -0.46581 -0.46581 0.08045628 -0.46581 -0.4695902
. : -0.4449673 -0.4449673 -0.4449673  -0.46581 -0.4449673 0.08045628
The sequence of ry for varying k is called the -1.0086056 -1.0086056 -1.0086056 -0.4449673 -1.0086056  -0.46581
autocorrelation function -0.2618347 -0.2618347 -0.2618347 -1.0086056 -0.2618347 -0.4449673
0.33297074 0.33297074 0.33297074 -0.2618347 0.33297074 -1.0086056
-0.130812  -0.130812 -0.130812 0.33297074 -0.130812 -0.2618347
Purely random data (e.g., white noise) are serially -0.5008106 -0.5008106 -0.5008106  -0.130812 -0.5008106 0.33297074
: L 0.4618072 0.4618072 0.4618072 -0.5008106 0.4618072  -0.130812
uncorrelated and the autocorrelation function is a 0.70869675 0.70869675 0.70869675 0.4618072 0.70869675 -0.5008106
Dirac-delta distribution, i.e. ¢,=1 only per k=0 and 10.3454617 -0.3454617 -0.3454617 0.70869675 -0.3454617 0.4618072
ck=0 per kz0
P Co=0.56 co=0.544 co=0.52
n=ro=1 r=r;=0.664 r.=r;=0.265
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$ '«

1

Long memory
Power law decay

Correlation coefficient, r,

Short

memory Exponential

decay
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FIGURE 19.2.1 Schematic representation of a correlogram Lag K (years)

witl shostiaud long mesnory. FIGURE 19.2.2 Correlogram of annual flows of (@) the White Nile River
at Mongalla (1914 - 1983), () the Nile River at Aswan (1871 - 1989), and

Time series with power law decaying serial correlation (¢) the Blue Nile River at Khartoum (1912-1989).

exibit long-term memory, where time series with faster
decaying (e.g., exponential) serial correlation show only
short-term memory or zero (if pure noise)
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Saane @ Lau pen Annual Series (original) Aare @ Bern Annual Series (original)
o0 | 1700 —
; 600 —| z 1400 i
— 1300 —
- 100 —
19150 19150 19170 1s|su 19|90 1s|50 1s|sn 1s|70 19|ao 1s|ao
Year Year
ACF Annual Series (original) ACF Annual Series (original)
s :;:""*}?\”"""""17"72\117
ffffffff T~ N T~ ]
; Annual Cross Correlation (original) St 1 & 2
Station 1: SAANE_@_LAUPEN -
Station 2: AARE_@_BERN
St_NUM Mean  StDev CV Skewness Min Max acf(l) acf(2) £ N . e e e
g B — _— — ~
ST(1): 644.7 122.0 0.1893 -0.4261 354.4 856.8 -0.0174 0.1074 95 —
ST(2): 1448. 163.9 0.1132 -0.3880 1082. 1742. -0.0426 0.0465
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Hydrologic time series, in
various degrees, exhibit
trends, shifts, jumps,
seasonality, autocorrelation
and non-normality.

These attributes are referred
to as components.
Therefore, a time series can
be decomposed
(partitioned) into his
components

PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

Partitioning should be done in order to build a comprehensive
mathematical model able to reproduce all components and so
later be used to reconstruct synthetic data with statistical

properties equal to the original time series

c Pr-L I
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Hydrologic
time series
Deterministic Stochastic
component companent
Stationary Noen-stationary
Periodic : True only in a Represented by
Non periodc relative sense; ARIMA
1 Could be sub- secopd-or_dcr
[ L divided as follows stationarity ‘ :;nodclsa,
ide chapter
- . Teansient often considered p
Sinusoidal Complex SRR [
—Pcrlcct periodic 'tl;rt;nd_s {or trr)zn_dmke)
o e ehaviour and jumps
sinusoids Annual and " 2 " I |
not found in daily Almost-periodic E rgodic
hydrology cycles Tides This property
is generally Non-ergedic
assumed in
practice
Indegendem Dependent
White noise Represented
with by
distributions autoregressive,
of normal, ARMA, FGN and

Figure 2.3

Components and subdivisions of a hydrological time series

gamma and
other types
(chapter 3)

other models
{chapters 4
and 5)
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The univariate (single) time series is a sequence of

Y
m M GO A A A “ / annual total river discharges, for example. The original
time series has (constant) mean different from zero

and (constant) std different from 1.

4S
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d
Az, =(Y,-V)/S @

The standardised time series has now mean
equal to 0 and std equal to 1
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Removing trends ‘m;
y¢ is the variable affected by the linear The detrended variable constant (or
or nonlinear trend y; nonconstant) standard deviation

d e "
| M ;\ | Constant S

(a) (c)
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Yt

— 4 yi— %t
Yi—Yi S
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Standardisation

d
(b) (d)
The detrended variable has now zero mean Standardisation transforms the process
variable into another one having zero
mean and unitary variance

c Pr-L I



4
Yt f\_
_ YOy
Y - ‘
‘ | Y2 i , 1
-
'E+1
(a)
Yi~% |

e

(b")
Shifts can be removed by translating the time series as for

trends. The residual series may still possess time
dependent variance caused by the shift

c Pr-L I

Sl 81
| S
!
! — 1
14+ 1
(c)
“i—-% |
Sy

\‘f t

(d)

Standardisation may be used to obtain a transformed time

series having homogeneous moments, yet containing
temporal autocorrelation



Removing time dependent trends (e.g., seasonality)

Hydrological and meteorological variables often exhibit almost periodic patterns at the monthly (seasonality) and the
daily (synoptic) time scales. These can be removed as well from the moments

AY
A f Ye- ‘?I
Hlstorical | |
ries The residual time
> series still has
! t " ' i periodic variance
° year 1 2 3 4 - (or std) 0 {
K N 4 S ©)
Mean Standard
XA A=F devlation /W\/\/
- AZ = (Y, -Y)S
le v Remove standard Zy= (Y= Yil/Sy
Removse ‘ deviation
the mean (autocorrelated serles)
0 WMWL* t 0 Amﬂ-wmbvaw—* !

Seasonal standardisation
(deseasonalisation)
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The standardized time series

may still present a temporal
correlation structure (even
periodic), which can be
removed in order to
separate the deterministic
structure from the noise
affecting the data

In the following, we will examine
how all these operations can be
done by means of deterministic and
stochastic models

m
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Remove standard
deviation
(autocorrelated series)

! 0

o bAAA _AALASL ot 0

f(e) (h)
Probability distribution
ofe

1 Correlation structure L
of z, (correlogram)
"
'y {f) b ()
fork=0
fork=0 Autocorrelation
coefficients
0 > 1 0 - P
) g'
L 3 - [ ¥
Remove correlation
structure
(uncorrelated series)
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What do we see here?
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Vertical shift: onset of storage detention Gradual minimum increase: onset of MF policy
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Average year in the pre- and post-dame periods

Pre-dam Post-dam1
50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 50 w w w w

451 1 451
40 1 401
35+
30

251

20

15+

10+

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
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Minimal Flows: summer and winter values
3 F |

2.5 |

1.5

N1 WMJ |

| Bt AT vV L | | r |
1r | .
Summer MFR, 1.8 m3/s

Winter MFR, 1.2 m3/s
05 F -

17500 18000 18500 19000
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2.5H
2H |
L/If\’\\/w | anad AM\/A
1.5 VI I/I_
B N N | f/\f/\wwfw
1 - —
365 days
0.5 I I I I | | —
1.965 1.97 1.975 1.98 1.985 1.99

><104
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Winter MFR, 1.2 m3/s Summer MFR, 1.8 m3/s
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